(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(f(X)) → a__c(f(g(f(X))))
a__c(X) → d(X)
a__h(X) → a__c(d(X))
mark(f(X)) → a__f(mark(X))
mark(c(X)) → a__c(X)
mark(h(X)) → a__h(mark(X))
mark(g(X)) → g(X)
mark(d(X)) → d(X)
a__f(X) → f(X)
a__c(X) → c(X)
a__h(X) → h(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(z0)) → a__c(f(g(f(z0))))
a__f(z0) → f(z0)
a__c(z0) → d(z0)
a__c(z0) → c(z0)
a__h(z0) → a__c(d(z0))
a__h(z0) → h(z0)
mark(f(z0)) → a__f(mark(z0))
mark(c(z0)) → a__c(z0)
mark(h(z0)) → a__h(mark(z0))
mark(g(z0)) → g(z0)
mark(d(z0)) → d(z0)
Tuples:
A__F(f(z0)) → c1(A__C(f(g(f(z0)))))
A__H(z0) → c5(A__C(d(z0)))
MARK(f(z0)) → c7(A__F(mark(z0)), MARK(z0))
MARK(c(z0)) → c8(A__C(z0))
MARK(h(z0)) → c9(A__H(mark(z0)), MARK(z0))
S tuples:
A__F(f(z0)) → c1(A__C(f(g(f(z0)))))
A__H(z0) → c5(A__C(d(z0)))
MARK(f(z0)) → c7(A__F(mark(z0)), MARK(z0))
MARK(c(z0)) → c8(A__C(z0))
MARK(h(z0)) → c9(A__H(mark(z0)), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, a__c, a__h, mark
Defined Pair Symbols:
A__F, A__H, MARK
Compound Symbols:
c1, c5, c7, c8, c9
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 5 dangling nodes:
A__F(f(z0)) → c1(A__C(f(g(f(z0)))))
A__H(z0) → c5(A__C(d(z0)))
MARK(c(z0)) → c8(A__C(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(z0)) → a__c(f(g(f(z0))))
a__f(z0) → f(z0)
a__c(z0) → d(z0)
a__c(z0) → c(z0)
a__h(z0) → a__c(d(z0))
a__h(z0) → h(z0)
mark(f(z0)) → a__f(mark(z0))
mark(c(z0)) → a__c(z0)
mark(h(z0)) → a__h(mark(z0))
mark(g(z0)) → g(z0)
mark(d(z0)) → d(z0)
Tuples:
MARK(f(z0)) → c7(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c9(A__H(mark(z0)), MARK(z0))
S tuples:
MARK(f(z0)) → c7(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c9(A__H(mark(z0)), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, a__c, a__h, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c7, c9
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(z0)) → a__c(f(g(f(z0))))
a__f(z0) → f(z0)
a__c(z0) → d(z0)
a__c(z0) → c(z0)
a__h(z0) → a__c(d(z0))
a__h(z0) → h(z0)
mark(f(z0)) → a__f(mark(z0))
mark(c(z0)) → a__c(z0)
mark(h(z0)) → a__h(mark(z0))
mark(g(z0)) → g(z0)
mark(d(z0)) → d(z0)
Tuples:
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
S tuples:
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, a__c, a__h, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c7, c9
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(MARK(x1)) = [4]x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [1] + x1
POL(h(x1)) = [4] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(z0)) → a__c(f(g(f(z0))))
a__f(z0) → f(z0)
a__c(z0) → d(z0)
a__c(z0) → c(z0)
a__h(z0) → a__c(d(z0))
a__h(z0) → h(z0)
mark(f(z0)) → a__f(mark(z0))
mark(c(z0)) → a__c(z0)
mark(h(z0)) → a__h(mark(z0))
mark(g(z0)) → g(z0)
mark(d(z0)) → d(z0)
Tuples:
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
S tuples:none
K tuples:
MARK(f(z0)) → c7(MARK(z0))
MARK(h(z0)) → c9(MARK(z0))
Defined Rule Symbols:
a__f, a__c, a__h, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c7, c9
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))